
Abstract-Click-evoked otoacoustic emissions (CEOAEs) from 
preterm infants were analyzed to characterize developmental 
changes of cochlear active mechanisms. Due to their strong 
time-varying properties, CEOAEs were studied with the wavelet 
transform. Results obtained in our study give a clear indication 
that time-frequencies characteristics of CEOAEs are not fully 
developed in preterm babies and reach the complete   
maturation at about 38 wks post-conception. Also, in agreement 
with previous physiological and behavioral findings, our results 
show that the maturation of cochlear active mechanisms is not 
the same along the cochlear partition but exhibit a spatial 
gradient proceeding from base to apex. 
Keywords -  Cochlear maturation, otoacoustic emissions, 
preterm babies, cochlear modeling, wavelet transform 

 
I. INTRODUCTION 

 
Otoacoustic emissions (OAEs) are acoustic signals 

produced by the active contraction of the outer hair cells of 
the organ of Corti. OAEs can be evoked by click stimuli and 
are recorded in the external auditory canal with a probe 
containing a miniature microphone and a transducer (for a 
review, see [1]). 

Click-evoked otoacoustic emissions (CEOAEs) are 
delayed transient signals and show a frequency dispersion 
similar to the well established frequency distribution along 
the cochlea. The waveform of a CEOAE response typically 
depends on the spectral energy of the stimulus. When a 
broad-band stimulus (such as a click) is used, the 
corresponding emission response shows spectra with several 
dominant frequencies with different onset times and 
damping, resulting in a OAE with a complex waveform. 
Analysis of the time-frequency properties of CEOAEs is of 
considerable interest due to their close relation with cochlear 
mechanism [2]. 

Because of the strict relation to active cochlear mechanism, 
the analysis of morphological changes in the OAEs of 
preterm infants during the first weeks after birth is a non-
invasive and simple way to characterize the developmental 
changes of cochlear active processes. 

In this study, CEOAEs of preterms were analyzed by 
means of a time-frequency technique - the wavelet transform 
- in order to characterize and quantify the changes in their 
time-frequency patterns and to compare our findings with 
previous physiological findings. 
 

II. METHODOLOGY 
A. Subjects and Measurements 

 
Thirty four preterms, admitted to the NICU, were 

considered in this study. Their mean gestational age at birth 
was 30.3 wks (s.d.=1.4 wks). A total number of 58 ears were 

tested by CEOAEs (24 out of 34 preterms had bilateral 
measurements and 10 out of 34 had monolateral 
measurements). Each ear had a minimum of three and a 
maximum of 11 subsequent CEOAE measurements in a 
period ranging from 1 to 8 wks after birth. A total of 307 
CEOAEs were thus obtained. 

Also, CEOAEs were measured from a control group of 
full-term babies (n=333) at the third day after birth. 

 
B. Time-frequency analysis 

 
The time-frequency analysis of each CEOAE response was 

obtained by means of the wavelet transform (WT) [3]: 
 

W f f f x t f f t dt( , ) ( ) ( ( ))τ τ= ⋅ ⋅ −∫0 0γ  

 
The function γ(t) is the ‘mother’ wavelet, which is a band-
pass function centered around t = 0  and f f= 0  in the time 
and frequency domains, respectively. In the present study, we 
choose [4]: 

γ( ) ( ) cos( )t t t= + ⋅−1 208 1  
 
On a more practical ground, the WT f( , )τ  of signal x t( )  at 

the generic time τ and frequency f is equal to the inner 
product of x t( )  with a translated and dilated version of the 
mother wavelet γ ( )t . 

In the specific case of CEOAEs, according to [4], the WT 
has the best time-frequency resolution among all the other 
time-frequency methods. 

The original signal x t( ) can be synthesized by adding all 
the contributions WT f( , )τ : 

 

x t c f f WT f f f t f f d df
ft

( ) ( , ) ( ( )) ( )
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2

γ τ γ τ τ  

where c is a constant which depends on γ ( )t . As 
demonstrated by Tognola et al. [4], the above expression can 
also be used to derive the contribution of the generic 
component x tfi∆ ( ) of x t( )  in a frequency band 

∆f f fi i i= − −1 by restraining the integration in the frequency 
range f f fi i− ≤ ≤1  (where f fi i> −1). 

In this study, CEOAE components were extracted for 12 
adjacent bands, 0.5-kHz-wide, with central frequencies 
ranging from 0.5 to 6 kHz. 

Finally, the developmental changes in the CEOAEs of the 
studied population were characterized by means of the 
following quantitative parameters: root-mean-square (RMS) 
amplitude of the original CEOAE and of its wavelet-derived 
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frequency components; latency of CEOAE frequency 
components. 

 
III. RESULTS 

 
The mean RMS amplitude of the CEOAEs as a function of 

the post-conceptional age (PCA) is shown in Fig. 1. The 
RMS amplitude has a significant increase up to about 37 wks 
PCA and reaches a plateau for PCAs greater than 37 wks. 

As an example of the proposed technique for the extraction 
of the CEOAE frequency components, Fig.2 shows a 
CEOAE from a preterm baby and its wavelet-derived 
frequency components. 

 
Fig.1. Mean RMS amplitude (± 1 s.d.) of CEOAEs as a function of the PCA. 
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Fig. 2. Example of an emission evoked by an acoustic click at 80 dB SPL  
(trace at the top) and its wavelet-derived components in the 0.5-6.0 kHz 

range. To reduce the influence of the stimulus artifacts, OAE response has 
been windowed 2.5 ÷20 ms post-stimulus time. 

 
Fig. 3 illustrates the comparison between the RMS 

amplitude of the CEOAE frequency components of preterm 
babies (measured at 28-30 and 34-36 wks PCA) and full-term 
babies. CEOAEs from full-term babies were measured at the 
third day after birth. The comparison shows that at 28-30 wks 
PCA, the amplitudes of CEOAE bands are significantly 
smaller than for term babies for all frequencies. Also, at 28-

30 wks PCA, there is a predominance of low frequencies 
against mid-to-high frequencies, in contrast to what is 
observed in term infants. On the contrary, at 34-36 wks PCA, 
the amplitudes of CEOAE bands are very similar to those of 
term babies. It is to note that mid-to-high frequencies grow 
faster than low frequencies: on average, the increase rate is 
about 3-5 µPa/wk for mid-to-high frequencies against 1 
µPa/wk for low frequencies. 
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Fig. 3. Mean RMS amplitude (+ 1 s.d.) of CEOAE frequency bands for 

preterm babies (open squares) at 28-30 and 34-36 wks PCA and full-term 
babies (black diamonds). 

 
Results in Fig. 4 show the comparison between CEOAE 

latencies as a function of frequency for preterm babies and 
full-term babies. Data from preterm infants were measured at 
different wks post-conception. For both populations, it is 
possible to note the typical trend of greater latencies for 
lower frequencies, as already observed in the CEOAEs of 
adults [2]. 

In preterm infants, the latency progressively decreases as 
the PCA increases and reaches values similar to those of full-
term babies at about 34-38 wks PCA. As observed for the 
RMS amplitude, the latency of mid-to-high frequencies 
changes faster than for low frequencies (about 0.15 ms/wk 
against 0.11 ms/wk). 

 
IV. DISCUSSION & CONCLUSION 

 

It is well established that cochlear functionality initiates at 
the age of about 20 wks [5], whereas cochlear morphological 
changes are terminated at 30-32 wks post-conceptional age 
[6].  As to the maturation of cochlear active mechanisms (due 
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to the activity of the outer hair cells), no agreement has been 
reached yet. During the last decades, several studies were 
devoted to the investigation of developmental changes of 
OAEs to try to characterize the maturation of cochlear active 
mechanisms (see, for example, [7-10]). 

In our study, there is evidence that OAE properties are 
related to the PCA: the amplitude and latency of both the 
CEOAE and its frequency components change until the age 
of about 38 wks post-conception, whereas after 38 wks PCA, 
OAE properties appear to be very similar to those of term 
babies. This is a strong indication that OAEs are not fully 
developed in preterm infants. In particular, the amplitude is 
characterized by a significant increase whereas the latency 
tends to decrease with age. 

These developmental changes are not uniformly distributed 
across the different frequency bands but show a faster rate of 
change for mid-to-high frequencies than for low frequencies. 
Our results seem to be in agreement with current 
physiological findings indicating that cochlear epithelium 
differentiation proceeds from base to apex, that is, from high 
to low frequencies [11]. 

Also, the developmental changes observed in the latency of 
CEOAE frequency components are very similar to those 
revealed by Eggermont and coll. in a study of developmental 
changes in auditory brainstem responses (ABR) [12]. Similar 
to our findings, the latencies of derived ABR octave bands 
progressively decreased with age and showed a spatial 
gradient of maturation proceeding from base to apex. 
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Fig. 4. Latency of CEOAE components of preterm babies and full-term 

babies (stars). Preterm babies were tested at various PCA: <34 wks (open 
squares) and at 34-38 wks (open diamonds).  
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